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Abstract

The 4-channel smooth wavelets with linear phase and orthogonality are designed from the 2-channel orthogonal wavelets

with high transfer vanishing moments. Reversely, for simple lifting scheme of such 4-channel orthogonal wavelet transforms, a new 2-

channel orthogonal wavelet associated with this 4-channel wavelet is constructed. The new 2-channel wavelet has at least the same number

of vanishing moments as the associated 4-channel! one. Finally, by combining the two such 2-channel wavelet systems, the lifting scheme

of 4-channel orthogonal wavelet transform, which has simple structure and is easy to apply, is presented.

Keywords: lifting scheme, 4-channel orthogonal wavelet, 2-channel orthogonal waveiet, vanishing moment, transfer vanishing

moment, linear phase.

The lifting scheme has been used in both de-

[1.2] and factorization® of filter banks, which is

sign
reversible and adopted in-place computationm. The
lifting scheme can realize fast implementations of the
discrete wavelet transform, and design transform that
map integers to integers“’SJ. Chen et al. %) extended
Sweldens’ conventional 2-channel lifting scheme and pre-
sented the M-channel lifting scheme factorization of per-
fect reconstruction filter banks. However, this M-channel
lifting scheme is complicated and difficult to apply. The
aim of this paper is to simplify the lifting scheme of a spe-
cial kind of 4-channel wavelet transforms.

In order to construct Heisenberg FIR ({finite im-
plush response) filter banks, Jawerth and Pengm
proposed a new method of designing 4-channel sym-
metric low-pass filters. Peng et al. (8] extended that
method to design 2"-channel wavelet systems with
beautiful structure from the 2-channel ones. Howev-
er, the vanishing moments of the designed 4-channel
wavelets are incompatible with that of the associated
2-channel ones (see Fig.1 in Ref.[8]), which is an
obstacle to further study of such 4-channel wavelet
transforms.

In this paper, the incompatibility is proved theo-
retically. Then, the concept of transfer vanishing
moments of 2-channel wavelets is introduced. Hence,
the 2-channel orthogonal wavelet with P transfer
vanishing moments will directly generate a symmetric
and orthogonal 4-channel wavelet with P vanishing

moments. To simplify the lifting scheme of such 4-
channel wavelet transform, a new 2-channel orthogo-
nal wavelet is constructed, which has at least the
same vanishing moments as the 4-channel wavelet.
Finally, the 4-channel orthogonal wavelet transform
is divided into two independent 2-channel transforms.
By combining such 2-channel wavelet transforms, the
lifting scheme of 4-channel orthogonal wavelet trans-
form is presented.

1 Relationship between 2-channel wavelets
and 4-channel wavelets

A 2-channel low-pass FIR filter is denoted by

| fol. Let z = e, then its z-transform is given by

F(z)= kazk. Its polyphase decomposition is
i€z
F(z)=Fy(2?) + 2F,(2?), with F;(z)= 2f2k+,-zk

kez
(i =0,1) being its two polyphase components.

Similarly, suppose the 4-channel low-pass filter
is denoted by {h,!, and its z-transform is H(=z)

= thzk. The polyphase decomposition of & is
i€z

H(z)=H0(z4)+zH1(z4)+22H2(24)+23H3(z4)»
with H;(z) = Zh4k+,-zk, (:i=0,1,2,3) being its

kez
polyphase components. Denote by { g,i} the high-pass fil-
ters for (i =1,2,3), and G'(z) their z-transforms.

We firstly recall the algorithm in Ref.[8].
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Lemma 1 (Theorem 1 [8]). Suppose f = ( fo,
f1s f25 s far-1), and its polyphase decomposition
is F(z) = Fyg(2%) + 2F, (2?). Define H(z) =
Folz*) + 2F () + 2% Y Fo(z ™) + z YE (7).
Then f is a 2-channel low-pass filter with length 2L,
if and only if H(z) determines a 4-channel symmet-
ric low-pass filter with length 4L .

L
From Lemma 1, we know F;(z) = Z for+ 2t
=)

for : =0, 1, and the polyphase components of the
corresponding 4-channel low-pass filter are H,(z) =
F(z), Hy-;(z)=2""1F:(z7!) with i =0, 1.
For the 4-channel system here is orthogonal, its

)!) should be paraunitary.

polyphase matrix H, ( z
Next, the simple version of H ,( z) 8 is presented by

proper phase-shift.

Theorem 1. Suppose that f = ( fo, f1, f2, ***»
f2L-1) is a 2-channel filter with length 2L . Its two

polyphase components are Fy(z) and F;(z). When

_L-1
L is odd, denote Hy(2z)=2 % Fo(z) and H (=)
_L-1
=2z 2 Fi(z). And when L is even, denote
_L=2 _L-2
Ho(z)=z 2 F¢(z)and Hi(z)=2z 2 F,(z).
Then H(z) = Hy(2*) + zH, (2*) + 2?H, (2 ™) +
2?Hy (2™ *) determines a 4-channel symmetric or-
thogonal low-pass filter with length 4L, if and only if
f is a 2-channel orthogonal low-pass filter.

By Theorem 1, we know that when L is either
odd or even, the polyphase matrix H |, can be written
as .

Ho(z) Hi(z) H{(z™") Hp(z™1)
~Ho(z) Hi(z) —H{(z™') Hy(z™)
PUI~Hi(2) —Ho(z) Ho(z™') Hy(z"1)|
H((z) —Hy(z) —Hy(z ') Hi(z™)

(1)

where four entries in each row exactly correspond to
the polyphase components of H(z) and G'(z), i =
1,2,3. H,(z) can be proved to be paraunitary and it
can determine a 4-channel orthogonal system with
beautiful structure.

Theorem 2. Suppose that the 4-channel
polyphase decomposition of h is H(z) = Ho(z*) +
2Hi(2*) + 22 H,; (2 ™) + 2*Ho(2™*), while that of
f is denoted by F(z)=Ho(z?) + zH,(2%). If f
satisfies P >1 vanishing moments, then the number

of vanishing moment of 4 is less than 2.

Proof. If f satisfies P >1 vanishing moments,

at least P =2, then by Ref.[10], %5 ~ 0 holds.

Expanding it, we have

H )
dF = 2jz? —dHO(zZ) + z d l(zz)}+ 1zH1(zz).
dw dz dz
Let Hi(z) =4z d_dl_zli(z) for i =0,1 and @ = x.

Then we have H(l)(l) - H}(l) =2. Suppose that A

T

has P =2 vanishing moments, then (31—[: ‘ {

=0 holds. Expanding it, we have

i—f =i{[Ho(2*) + 2H](z*)
- 22 H{(z™) - 2*Hy(z™)]
+ [2H (%) + 22?H(z™%)
+32°Ho(z™) 11},
Let w € {L,Tr,:;_ﬁ}, then H(l)(l)Zl and H,(1) =
2 2 2

% hold. It is in contradiction. Therefore, if f has

arbitrary P > 1 vanishing moments, then s satisfies

at most P =1 vanishing moment. Q.E.D.

Theorem 2 shows that the vanishing moment of
h is incompatible with that of f. For designing
smooth 4-channel wavelets, new conditions should be
imposed on F (z). Hence, the concept of transfer
vanishing moment is introduced. Using the definition

dH,
in the proof of Theorem 2, let H%(z) =45 d—zl(z)

with =0, 1. if F(z)=Hy(2?)+ 2H,(2?) satis-
fies the equations corresponding to p =0,1, -, P — 1
listed in Table 1, then F(z) is called satisfying P
transfer vanishing moments.

Table 1.  Transfer vanishing moments
» Hp Hy
0 Hy(1)=1 Hi(1)=1
1y_3 1
1 Hy(1) =~ H}(1)=7
2 Hi(1)=H%1) +2 —
30y 9 0 27 3oy 3 1
3 Hp(1) = 5 Ho(1) - 4 Hi(D =5 H}(1) - -

4 Hy(1)=H{(1) +12H3(1) +2 —

Theorem 3. Suppose that H; (z) (i =0,1) is
defined in Theorem 1. H(z) = Hy(z*) + zH, (z*)
+ 22H (27 %) + 2*Hy(z™*) determines 4-channel
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wavelets with P vanishing moments, if and only if
F(z)= Hy(2%?) + zH, (2?) determines 2-channel
wavelets with P transfer vanishing moments.

To construct 4-channel orthogonal wavelet with
P vanishing moments, it is only necessary to design a
2-channel orthogonal wavelet that has P transfer van-
ishing moments. After the smooth 4-channel wavelets
are designed, we then should simplify their trans-
forms. Since the transfer vanishing moment is much
different from the traditional vanishing moment, we
introduce a new 2-channel low-pass filter f associated
with k. It can be proved that this filter has the same
vanishing moments as h. The polyphase decomposi-
tion of f is
F(z) & Ho(2?) + zH (27%). (2)
Clearly, (i) F (z) is the combination of the first
component with the third one of H(z); (ii) F(z)
also determines the 2-channel orthogonal filter f;
(iii) f., each entry of f, corresponds to h ;.

In the following part, we will discuss the com-
patibility of the 2-channel and 4-channel systems in
the vanishing moments.

As for the 2-channel low-pass filter F(z) =
Fo(22) + 2zF;(2?), we have

Lemma 2. Let F(z)=F;(z) (i=0,1), and

n -1

Similarly, as for the general 4-channel low-pass
filter H(z) = Ho(2*) + zH,(2*) + 22H,(z*) +

23 H;(2%), we have

Lemma 3. Let H(2)=H,(z) (i=0,1,2,3),
" a”!
and H! (z) =4z
dz
-). Then
d”H _ i
do"

(z) (:=0,1,2,3. n=1,2,

([H(=%) + =H} (=)

+ 22H(2*) + 23 Hi(2H)]
n

1
+ 323H'3l_1(z4)] + e

(n
+

m
+ 3mz3H§*m(z4)] 4 e

n

+ [zH'{_l(z4) +222H'2'_1(z4)

(%)

[zH'll_m(z4) + 2"‘22H;im

+ [zH?(z“) +2"22H(2)(z4)

+ 372 HY(=4)1]. (4)

For the special relation between F, .(z) and
H;(z) in Eq. (2), substituting F(z) into Eq. (3)
and Eq.(4), we have

d'F 1 (d'H d'H
de”

Clearly, if ~ satisfies ¥V P vanishing moments, F cor-

W=

Fl(z) =22 di (2z) (i=0,1. n=1,2,-). responding to Eq. (2) satisfies at least P vanishing
z
Then the following equation holds: moments.
d"f.: =i" { [ Fq( ) + zF'| ( z*)] Fig.1 shows the comparison of scaling functions.
do Fig.1(a) is the scaling function @ corresponding to
+ | " [zF'{—l(z"’)] + - the 4-channel low-pass filter A with length 20 de-
! signed in Ref. [8], while Fig.1 (_b) and Fig. 1(c)
+ " [2F] " (2*)] + - show the scaling functions ¢ and $ corresponding to
" f and f, respectively. Clearly, ¢ is smooth, but $ is
T [zF?(z4)]}. (3) not.
1.2 1.2 1.2 :
(@) () Lot ©
1o 0.8
0.8 0.8
0.6 0.6 0.6
0.4 04 0.4
0.2 0.2
0 0 0
- —_— -0.2 . -0.2
0.20 4 8 12 16 20 24 0 2 4 6 8 10 12 0 2 4 6 8 10 12

Fig. 1.

Comparison of scaling functions.
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2 d4-channel lifting scheme with simple struc-
ture

Because H, (z) is paraunitary, the 4-channel
wavelet system determined by Eq. (1) is orthogonal.
As for an input signal z, X(z)=Xo(z*)+ 2X,(=z*)
+22X,(2*) + 23X 3(2*) is its polyphase decomposi-
tion where X; (z) with i =0, 1, 2, 3 are its
polyphase components. Letting X (z) = [ Xo(z2),
X,(z), X,(z), X3(z)]T, the 4-channel wavelet
transform can be expressed by H,(z)X(z).

Transposing the second column with the third
one of H,, we have

Ho(z) Hy(z™') | Hi(2) Hy(z™YH
N - Ho(z) -H{(z™1)| H(z) Hy(z™1)
= - Hi(z) Hy(z ') |-Ho(z) Hi(z™})
| Hi(2) - Ho(z 1) |- Hp(z) Hi(z™1)

(5)
For clear discussion, H, is written as the form of
blocked matrix. Then, the 4-channel wavelet trans-

form becomes
H,(z)X(z)

= H,(2) * [Xo(2)X2(2)X1(2)X3(2)]".
(6)

In the expression of ﬁp, the two entries in each
row of each block correspond to the two polyphase

X (2)

Fig. 2.

The upper dash frame in Fig.2(b) shows the 2-
channel orthogonal wavelet transform based on F(z)
and G (z), and the lower one shows that based on
F(z) and G (z). Therefore, lifting scheme of 4-
channel system can be simply divided into two 2-
channel lifting schemes. The lifting scheme of
Eq.(7) is shown in Fig. 3, where 5;(2), 7,(2),
s;(z) and #,(z) represent the lifting steps of the two

2-channel systems, respectively.

components of one 2-channel filter, either low-pass or
high-pass. If the 2-channel polyphase decomposition
of the input signal x is written as X (z) = X°(2?) +
2X1(2?), then X%(z) = Xo(2?) + 2X,(z?) and
X'(z)=X,;(2%) + zX3(2z*) hold. Therefore, Eq.
(6) can be rewritten as

(VDF(x) | (V2)F(2) |
(V2)(-F(2)) | (¥2)F(z)
H, (z)X(z)= = —
(¥2)G(=) (¥v2)G(z)
i (V2)(-G(2)) | (¥2)G (=) |
. X°%(z)
[Xl(z)] 7

where F(z) is exactly defined by Eq. (2), and F =
H(22) + 2Hy (2 "%), while G(z) and G (z) are
the high-pass filters corresponding to F (z) and
F(z), respectively. Also, F(z)==z2"'F(z7")
holds, which shows ¢ and ¢ have the same regularity.

From Eq. (7), the 4-channel orthogonal wavelet
transform can be simply divided into two independent
2-channel wavelet transforms. Fig. 2 shows two equal
structures of 4-channel wavelet transforms. Fig. 2(a)
gives the general 4-channel wavelet transform, with
H(z) and G'(z) being the low-pass filter and three
high-pass filters for i =1, 2, 3. Fig. 2(b) presents
the combination of two 2-channel wavelet transforms
in Eq. (7), each of which is shown in one dash frame
respectively.

o O
12 h z
| G (o) (2~ Y= (1HGX
L E @ FOHC (I HGX
' G@ =2 ' (1 GX

Two equal structures of 4-channel wavelet transforms.

Using the factorization algorithm in Ref. [3],
we give the factorization of F (z), whose scaling
function is shown in Fig.1(c):

[ Hoy(z) }_[1 am} [ 1 0}
Hi(z™1 Lo 1 ) aptapyz ! 1
-[1 a20+a21zJ [ 1 Ojl
0 1 ) apptanz 1

Ll
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Fig. 3. 4-channel lifting scheme with simple structure.

The parameters are (@gg, @10> @115 @20> @215 2305 A31>
@40, @q1) = (—5.3836482, — . 009215727, 0.1795527,
—28.043056, 7.6974209, 0.0022974888, 0.017948667,
- 18.39089, —7.1095098, —0.12772164).

Ref.[4] gives two solutions to convert the scal-
ing operation (K or % in Fig.3) into maps from in-

tegers into integers. And the operation in the dash
frame in Fig. 3 can also map integers into integers.
Therefore, 4-channel lifting scheme can also be con-
verted into the map from integers into integers.

3 Conclusion

In this paper, smooth symmetric 4-channel or-
thogonal wavelets have been designed by finding the
2-channel orthogonal wavelets that satisfy high trans-
fer vanishing moments. The concept of transfer van-
ishing moment is introduced, because the vanishing
moment of the 2-channel wavelets is incompatible
with that of the 4-channel ones. For simple lifting
scheme of such 4-channel orthogonal wavelet trans-
forms, a new 2-channel orthogonal wavelet is con-
structed, which satisfies at least the same vanishing
moment as the 4-channel wavelet. By combining such
2-channel wavelet transforms, a simplified lifting

scheme of 4-channel orthogonal transform is given.
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